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Abstract—A novel approach for reconstruction of sparse high-
resolution data from lower-resolution dense spatio-temporal data
is introduced. The basic idea is to compute the dense feature
velocities from lower-resolution data and project them to the
corresponding high-resolution data for computing the missing
data. In this context, the basic flow equation is solved for intensity,
as opposed to feature velocities at high resolution. Although the
proposed technique is generic, we have applied our approach
to sea surface temperature (SST) data at 18 km (low-resolution
dense data) for computing the feature velocities and at 4 km
(high-resolution sparse data) for interpolating the missing data.
At low resolution, computation of the flow field is regularized and
uses the incompressibility constraints for tracking fluid motion.
At high resolution, computation of the intensity is regularized
for continuity across multiple frames.

Index Terms—High resolution, interpolation, motion, duality,
multigrid methods

I. I NTRODUCTION

This paper presents a novel approach for reconstruction
of high-resolution spatio-temporal data from lower-resolution
data. The development of the proposed system is driven by the
need to fill in missing data in high-resolution images obtained
from observational platforms. Current environmental satellites
generate massive amount ofsparse geophysical data, e.g.,
sea surface temperature (SST), ocean color, and precipitation
data. These observations are collected through the NASA
MODIS (50-100 gigabytes/day of oceanic data) and NOAA
AVHRR (4 gigabytes/day) spacecraft. Global AVHRR data
are down-linked to several universities and managed by an
automatic processing environment that navigates, calibrates,
and computes the geophysical fields (e.g., SST) and combines
the satellite swath data into daily, regional, and global fields.
In the case of SST, the sparseness of data is due to cloud and
aerosol contamination. These data need to be interpolated for
effective visualization and subsequent analysis. We focus on
dense reconstruction of sparse SST data at 4 km resolution.
An example of sparse SST data at high resolution is shown
in Figure 1. The novelty of our work is not just limited
to the proposed methods, but also to the fact that current
reconstruction (interpolation) algorithms do not scale to 4 km
data due to computational complexities. Our approach consists
of three steps:

1) Leveraging the current operational low-resolution recon-
struction techniques at 18 km.
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2) Computing feature velocities of dense spatio-temporal
images from low-resolution 18 km data.

3) Projecting computed feature velocities onto 4 km data
and solving the flow equation for intensity as opposed
to velocities.

Current methods for interpolating SST data are based on
objective analysis (OA) [1] and optimal interpolation (OI)
[2] as a special case. These techniques operate on randomly
distributed spatio-temporal data, and they have been shown
to be reliable up to 18 km resolution, e.g., a grid size of
0:25Æ with an image size of720� 1440. However, due to the
extremely high computational complexity of these methods,
interpolating SST data at high resolution, e.g., a grid size of
(0:04395Æ with an image size of4096�8192, remains an open
problem. We propose to solve this problem by integrating two
different sources of information:motion and temperature. In
the proposed model, we can incorporate flow, temperature,
incompressibility and smoothness together. As we shall see,
the temperature gradient and oceanic flow are dual, and if one
is known, the other can be computed. In this context, given
an estimate of oceanic flow, we can interpolate the SST data
by a “fix one and compute the other” strategy.

We show that our model can also be applied to a sequence
of high-resolution SST data where each frame has a corre-
sponding lower-resolution optical flow representation. This is
similar to the MPEG-1 standard, where motion is computed
at a low resolution to predict the next frame. The error in the
prediction is then corrected by the regularization term. There is
a close similarity between this model and the related Bayesian
framework [3]–[5].

The outline of this paper is as follows. An overview of
previous work and background material is presented in Section
II. Section III describes the basic idea and its detailed imple-
mentation. Section IV gives the experimental results. Section
V concludes the paper.

II. PREVIOUS WORK

In this section, a brief summary of objective analysis,
Bayesian models, and the Gibbs sampler is provided. Intro-
duction to traditional super-resolution restoration can be found
in [6]–[8].

A. Objective analysis

Objective analysis (OA) is used extensively by meteorolo-
gists [9] and oceanographers [1] for estimating the values of
geophysical variables at a grid of interpolation points from
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Fig. 1. Sample sea surface temperature (SST) data with no interpolation.

irregularly distributed data points. OA is based on the Gauss-
Markoff theorem for a linear minimum mean-square estimate
of a random variable and requires the estimates of the first
and second order statistics for both the observing and the
dynamical system.

The most common method of objective analysis in current
operational numerical forecast centers is the optimal interpo-
lation (OI) method. This method uses predefined covariance
functions derived from climatological data in order to relate the
covariance between the field at a grid point and the observation
point. The OI analysis is discussed in [2] where the analysis
is computed in terms of increments, rather than the actual
temperatures, so that the initial guess is preserved in regions
with little or no data. Presently, the OI analysis is produced for
daily and weekly periods on a1Æ grid. Since local conditions
tend to persist for a time, the previous OI analysis is used
as a first guess for the next analysis. This was found to be
more accurate than using climatology as an initial guess. To
reduce the number of observations used in the OI, averages
over1Æ squares are computed. These “super observations” are
computed independently per ship and buoy identification code
and for the day and night of satellite retrievals. Ships normally
make only one 6-hourly report, in a given grid box. As a result,
the chief effect of this averaging is to reduce the number of
buoy and satellite measurement values used in the analysis.
The analysis increment is defined as the difference between
the analysis and the first guess; the data increment is defined
as the difference between the data and the first guess. The
analysis increment,r(k), is given byr(k) =

P
iw(i; k)q(i)

whereq(i) are the data increments andw(i; k) are the least
square weights. The subscript(k) ranges over the grid points
where the solution is required and the subscript (i) ranges over
the data points. When there is little or no data in a region, the
weightsw(i; k) approach zero. The OI method is only optimal
when the correlations and variances needed to calculate the
w(i; k) are known for incremental analysis. Calculation of
the w(i; k) involves matrix inversions that become unstable
if too many data points are involved. This is one reason that
averages over the grid squares are formed before the analysis.
The ship measurements are noisier than the buoy and satellite
measurements, and they have smaller weight values in the
analysis.

OI is a widely accepted method in the community, and it
has been used by NOAA-CIRES Climate Diagnostics Center
to generate weekly sea surface temperature data with one-

degree resolution. However, all existing OA-based techniques
fail to interpolate SST data on higher-resolution grids, e.g.,
4096 � 8192, due to instability and increased computational
complexity.

B. Bayesian framework

Statistical inference has been used for analyzing and un-
derstanding images for at least 20 years [3], [10], [11].
A brief introduction to this topic can be found in [5]. In
general, such a model consists of two parts: aprior model
of possible parameters, and adata modelof what images are
consistent with this prior model of the scene. Letw be the
variables to describe the scene; the model is completed by
giving the conditional probabilities�(Ijw) of any imageI
given the scene variablesw, resulting in the joint probability
distribution:

�(I; w) = �(Ijw) � �(w) (1)

Using Bayes’ theorem, we have

�(wjI) =
�(Ijw) � �(w)

�(I)
/ �(Ijw) � �(w) (2)

The corresponding energy is expressed as

E(w) = � log(�(wjI)) = � log(�(Ijw)) � log(�(w))
= Ed(I; w) +Ep(w)

(3)
where the goal is now to minimizeE(w). Ep is sometimes
called the regularizer because it was historically introduced to
make the variational problem of minimizingEd well-posed.

Although the above framework is rather simple, it has
proven to be powerful. It is not sufficient to propose various
energy models – an efficient solution is also needed. Among all
computer simulation methods, the Monte Carlo methodology,
especially Markov Chain Monte Carlo (MCMC), provides an
enormous scope for statistical modeling, which has attracted
much attention among statisticians. MCMC is a well accepted
technique for integrating over high-dimensional probability
distributions, including situations with missing data and nui-
sance parameters, and may be used to make inference for
parameters of interest.

In the next section, we will introduce two special samplers
in MCMC, i.e., Gibbs sampler [4] and two-component Gibbs
sampler.

C. Gibbs sampler

Let
�(x) =

1

Z
exp(�E(x)) (4)

be the target probability distribution function under investi-
gation, whereE(x) is the energy, andZ is the normalizing
constant. Supposex = (x1; x2; � � � ; xd), and the current state
is x(t) = (x

(t)

1
; x

(t)

2
; � � � ; x

(t)

d ), whered is the dimension. Then
the systematic scan Gibbs sampler can be described as follows:

� For i = 1; � � � ; d, we drawx
(t+1)

i from the conditional
distribution

�(xijx
(t+1)

1
; � � � ; x

(t+1)

i�1 ; x
(t)

i+1; � � � ; x
(t)

d ) (5)



YANG AND PARVIN: HIGH-RESOLUTION RECONSTRUCTION OF SPARSE DATA FROM DENSE LOW-RESOLUTION SPATIO-TEMPORAL DATA 3

In summary, to update one variable, we fix all other variables,
and draw a sample from the conditional probability. Gibbs
sampler was proposed by Geman and Geman [4], which
effectively reduces a high-dimensional simulation problem
to a series of lower-dimensional ones, Thus, reducing the
complexities of large-scale problems. In practical applications,
highly correlated variables are often grouped together for
blocking Gibbs sampling. Among various grouping schemes,
the two-component Gibbs sampler is of particular interest,
which operates as follows. If a random variablex can be
partitioned into two parts,x = (x1; x2) with the current state at
(x

(t)
1
; x

(t)
2
), then a two-component Gibbs sampler [4] updates

as:
� Draw x

(t+1)
1

from conditional distribution�1j2(�jx
(t)
2
);

� Draw x
(t+1)
2

from conditional distribution�2j1(�jx
(t)
1
).

This sampler corresponds to the data augmentation algo-
rithm [12], which was designed for handling Bayesian missing
data problems. This idea is closely related to the EM algorithm
[13], which is widely used by computer vision researchers
[14].

III. D UALITY OF FEATURE VELOCITY MEASUREMENT AND

RECONSTRUCTION

Let I(t)(x; y) be a sequence of SST data wherex and y

correspond to latitude and longitude,t is the time, andI
is the actual temperature. Let(u(t)(x; y); v(t)(x; t)) represent
the corresponding feature displacement velocity (FDV) at
each point, whereu and v are the horizontal and vertical
velocity respectively. The energy governing computation of
FDV equation for incompressible fluid can be expressed as
(subscripts represent partial derivatives in this paper)RR

(Ixu + Iyv+ It)
2 + �2(u2x + u2y + v2x + v2y)+

�2(ux + vy)
2 + 
2(I2x + I2y)dxdy

(6)

This equation assumes brightness constancy, i.e.,

Ixu+ Iyv + It � 0 (7)

which is exactly the same constraint as the Horn-Schunck
optical flow model [15]. The first term in Equation 6 is the
simplified two-dimensional conservation of temperature. The
second term is the spatial smoothness constraint on the FDV.
The third term is the zero-divergence constraint when� is set
to a large number. For incompressible fluids, the fluid motion
has to have zero divergence at each point, i.e.,ux+vy = �wz,
wherew is the component in thez direction. Under weak
constraints, this equation can be expressed asux+ vy � 0. A
vector field with zero-divergence does not contain sinks and
sources. A counter example is given in Figure 2. The fourth
term is the smoothness of the temperature. This new constraint
is necessary for the interpolation (reconstruction) problem.

In general, all the unknowns in Equation 6 can be solved
simultaneously, but this is a difficult nonlinear problem that
cannot be solved in a reasonable time span. However, the
duality of Equation 6

(Ix; Iy; It) � (u; v; 1)
T = 0 (8)

indicates that if the FDV is fixed, then the intensity can be
computed with additional constraints and vice-versa.

Fig. 2. Critical points with non-zero divergence: (left) a sink; (right) a source.

Sparse SST Dense SST Oceanic flow
OA Flow model

Bilinear   interpolation

Our interpolation model
Oceanic flowDense SST

Low resolution

High resolution

Fig. 3. Protocol for reconstructing (interpolating) high-resolution SST data.

If the temperature is known at each point, then the following
model is used to estimate the FDV

1

2

ZZ
(Ixu+Iyv+It)

2+�
2(u2x+u

2

y+v
2

x+v
2

y)+�
2(ux+vy)

2
dxdy

(9)
This model has been studied in [16], [17], and can be solved
efficiently. On the other hand, if(u; v) is known, then Equation
6 reduces to

1

2

ZZ
(Ixu+ Iyv + It)

2 + 

2(I2x + I

2

y)dxdy (10)

Although the above strategy is feasible, the computational cost
is too high in the absence of a good initial condition. This
initial condition is derived from the low-resolution dense SST
data through OA analysis. Extending SST from low-resolution
to high resolution provides a good initial solution. However,
the computational cost of FDV at a high resolution, e.g., 4 km,
is still too high. As a result, we compute the flow at the low
resolution, then project theFDV to the high resolution. This
is a multi-resolution version of the two-component sampler
described in the previous section.

Figure 3 shows our approach to high-resolution reconstruc-
tion of sparse SST data which takes advantage of the dual
representation of Equation 6. We solve the FDV at low reso-
lution and then project it to high resolution for reconstruction
using the known velocity field. The concept of “fix one part
and compute the other” is utilized in the absence of random
sampling.

A. Computing velocity field at low resolution

Equation (9) is essentially the generalization of of Horn and
Schunck’s optical flow model [15]. A weak zero-divergence
constraint is added to form this new energy functional. This
model has been studied by Suter [16], Gupta and Prince
[17] and Yang and Parvin [18]. Our implementation uses
a multigrid method for high efficiency. We have tested our
technique on several years of SST data and compared the
computed velocity with ground truth data obtained from buoy
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Fig. 4. Computed feature velocities, their magnitude (asunderlying intensity),
and vortices from a pair of images at low resolution (18 km).

measurement. Figure 4 shows an example of the computation
of velocity field at 18 km resolution.

The corresponding Euler-Lagrange equations for Equation
(9) are given by�
�Ix(Ixu+ Iyv + It) + (�2 + �2)uxx + �2uyy + �2vxy = 0
�Iy(Ixu + Iyv + It) + �2vxx + (�2 + �2)vyy + �2uxy = 0

(11)
Substituting the finite difference representation ofu’s (and
similarly v’s) partial derivatives

uxxjj;i =
uj+h;i+uj�h;i�2uj;i

h2

uyyjj;i =
uj;i+h+uj;i�h�2uj;i

h2

uxyjj;i =
uj+h;i+h+uj�h;i�h�uj+h;i�h�uj�h;i+h

4h2

(12)

into Eq. (11), we have(
(I2x + 4�2+2�2

h2
)uj;i + IxIyvj;i = �1

IxIyuj;i + (I2y + 4�2+2�2

h2
)vj;i = �2

(13)

where

�1 = �IxIt +
�2+�

h2
(uj+h;i + uj�h;i) +

�2

h2
(uj;i+h+

uj;i�h) +
�2

4h2
(vj+h;i+h + vj�h;i�h � vj+h;i�h � vj�h;i+h)

�2 = �IyIt +
�2

h2
(vj+h;i + vj�h;i) +

�2+�

h2
(vj;i+h+

vj;i�h) +
�2

4h2
(uj+h;i+h + uj�h;i�h � uj+h;i�h � uj�h;i+h)

Representinguj;i and vj;i by �1 and �2, we have the
following iterative strategy(

u
(n+1)

j;i = 1

D
[(I2y + 4�2+2�

h2
)�

(n)
1
� IxIy�

(n)
2

]

v
(n+1)

j;i = 1

D
[�IxIy�

(n)

1
+ (I2x + 4�2+2�

h2
)�

(n)

2
]

(14)

where(u(n)j;i ; v
(n)

j;i ) is the velocity field at then-th step,D =
4�2+2�2

h2
(I2x + I2y ) + (4�

2
+2�2

h2
)2.

B. Computing intensity at high resolution

By projecting computed feature velocities at low resolution
to sparse high-resolution data, we now can fill in the missing
intensity data (temperature). LetI(t�1)(x; y) and I(t)(x; y)
be a consecutive pair of SST images, the brightness constancy
constraint is given by

I(t�1)x u(t�1) + I(t�1)y v(t�1) + I(t) � I(t�1) = 0 (15)

or

I(t) = �I(t�1)x u(t�1) � I(t�1)y v(t�1) + I(t�1) (16)

If I(t�1) is fixed, then an estimate ofI(t) is

bI(t) = �I(t�1)x u(t�1) � I(t�1)y v(t�1) + I(t�1) (17)

Equation (10) can be rewritten as

1

2

ZZ
(I � bI)2 + 
2(I2x + I2y )dxdy (18)

and the corresponding Euler-Lagrange equation is now given
by

I = bI + 
24I (19)

which is a very simple elliptic PDE. Substituting the finite
difference operator of4I

4Ij;i =
Ij+h;i+Ij�h;i+Ij;i+h+Ij;i�h�4Ij;i

h2
(20)

into Equation (19) yields

Ij;i = bIj;i + 
2
Ij+h;i+Ij�h;i+Ij;i+h+Ij;i�h�4Ij;i

h2
(21)

and the iterative equation is now given by

Ij;i  
h2bIj;i+
2(Ij+h;i+Ij�h;i+Ij;i+h+Ij;i�h)

h2+4
2
(22)

The detailed multigrid implementation of this algorithm is
as follows.

� STEP 0.h = 2K

� STEP 1. Repeat the following algorithm until it converges
for (i = 0; i < M ; i = i+ h) for (j = 0; j < N ; j =
j + h) let

Ij;i  
h2bIj;i + 
2(Ij+h;i + Ij�h;i + Ij;i+h + Ij;i�h)

h2 + 4
2
(23)
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1

Fig. 5. MPEG-1 compression standard.

whereM �N is the image size,(Ij;i is the temperature
at location(j; i).

� STEP 2. Linear interpolation.
for (i = 0; i < M ; i++)f

i0 = [i=h] � h; ri = (i� i0)=h;
for (j = 0; j < N ; j ++) f

j0 = [j=h] � h; rj = (j � j0)=h;
Ij;i = (1� ri)(1 � rj)Ij0;i0 + ri(1� rj)Ij0;i0+h+
(1� ri)rjIj0+h;i0 + rirjIj0+h;i0+h

(24)
g

g

� STEP 3. ifh = 1, stop; elseh = h=2, goto STEP 1.

The regularization process helps to confirm the estimate by
checking the compatibility with existing points, and to reduce
the error propagated between a pair of images.

C. Relation to MPEG-1 standard

Let us review the MPEG-1 standard. The basic scheme
for compressing a video sequence is to predict the motion
from frame to frame in time, and then to use DCTs (discrete
cosine transforms) to organize the redundancy in the spatial
directions. The DCTs are computed on 8x8 blocks, and the
motion prediction is done on 16x16 blocks. In other words,
given a 16x16 block in the current frame that needs to be
compressed, we look for a close match to that block in a
previous or future frame. Figure 5 demonstrates this concept.
If we know the accurate value on block 1 and its motion to the
next frame, we can simplycopyandmovethis block to itsnew
location, e.g., block 2 of the next frame, if the data are missing
there. In the case of the SST interpolation problem, the size
of each block is(4096=720)� (8192=1440), or approximately
6� 6. If the motion of a block of this size is known, then it
can help us to predict the next frame with high accuracy. This
is another way to present why we have avoided computing
oceanic flow at high resolution.

D. Multi-frame interpolation

Interpolation can be extended to multiple frames by rewrit-
ing Equation (10) as

E(I(1); :::; I(T )) = 1

2

PT

t=1

RR
[I
(t)
x u+ I

(t)
y v + I

(t)
t ]2+


2[I
(t)
x

2

+ I
(t)
y

2

]dxdy
(25)

This conditional probability can be approximated by

�(I(t)jI(1); :::; I(t�1); I(t+1); :::; I(T )) /

exp(�E(I(t)jI(1); :::; I(t�1); I(t+1); :::; I(T )))
(26)

where

E(I(t)jI(1); :::; I(t�1); I(t+1); :::; I(T )) =
1

2

RR
[I
(t�1)
x u(t�1) + I

(t�1)
y v(t�1) + I(t) � I(t�1)]2

+[I
(t+1)
x u(t+1) + I

(t+1)
y v(t+1) + I(t+1) � I(t)]2

+
2[I
(t)
x

2

+ I
(t)
y

2

]dxdy

(27)

Let

bI(tjt�1) = �I(t�1)x u(t�1) � I
(t�1)
y v(t�1) + I(t�1)bI(tjt+1) = I

(t+1)
x u(t+1) + I

(t+1)
y v(t+1) + I(t+1)

(28)

Then Equation (27) can be rewritten as

E(I(t)jI(1); :::; I(t�1); I(t+1); :::; I(T )) =
1

2

RR
[I(t) � bI(tjt�1)]2 + [I(t) � bI(tjt+1)]2+


2[I
(t)
x

2

+ I
(t)
y

2

]dxdy

(29)

with the corresponding Euler-Lagrange equation

I(t) =
bI(tjt�1) + bI(tjt+1)

2
+


2

2
4I(t) (30)

which can be summarized as follows:

1) Predict the current frame from the previous frame.
2) Predict the current frame from the next frame.
3) Average the two predictions.
4) Smooth the average.

To a certain degree, this is adopted from thesystematic scan
(blocking) of Gibbs sampler [4] introduced in Section II-C. By
applying the multi-frame optimization repeatedly, continuity of
interpolating images is significantly improved.

IV. EXPERIMENTAL RESULTS

We have validated our approach by removing dense regions
in sparse high-resolution data followed by its reconstruction
and comparison to the original data. Figure 6 shows the images
used for validation. Computed error is very small.

Figures 7 and 8 show experimental results of our approach.
Figures 7a and 7b correspond to the original sparse SST
data and its quality field, respectively. The white pixels in
Figure 7b indicate that the corresponding points in Figure
7a are highly unreliable. Figure 8a shows the dense SST
data at low resolution where the flow field is computed.
This dense data is reconstructed by objective analysis. The
image has been enlarged to match the size of corresponding
high-resolution data. This region corresponds to a20Æ � 20Æ

region centered on 140Æ west and 30Æ north. Figure 8b is
the interpolation result of Figure 7a, which shows a high-
resolution dense image of the temperature distribution. A video
of reconstruction results over a 30-day period is available at:
http://vision.lbl.gov/People/qyang/sst
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(a) (b)

Fig. 6. Reconstruction results: (a) original region that was removed from
low-resolution SST data; (b) reconstruction of missing region.

(a)

(b)

Fig. 7. SST data and quality field: (a) original SST data to be interpolated
(date: the 40th day of 1998, longitude: 150W-130W, latitude: 20N-40N); (b)
quality field: white pixels indicate that the corresponding points on (a) are
highly unreliable or missing.

(a)

(b)

Fig. 8. Reconstruction of sparse SST data for Figure 7a: (a) dense SST data
at low resolution (720� 1440); (b) interpolated SST data at high resolution
(4096� 8192).

V. CONCLUSION

Interpolation of large-scale geophysical data is an open
problem. This paper has proposed a new solution, applied it to
real data, and validated the results. The basic idea is to leverage
current operational interpolation techniques that are effective
at low resolution to compute the corresponding feature veloc-
ities. Missing data at high resolution are then estimated by
projecting computed feature velocities and solving the basic
flow equation in reverse.
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